

Follow that Robot

CS39440 Major Project Report

Author: Alex R. Hine (ALH72@aber.ac.uk)

Supervisor: Dr Fred Labrosse (ffl@aber.ac.uk)

April 2021

Version 1.0 (Draft)

This report is submitted as partial fulfilment of a BSc degree in
Computer Science (GH76)

Department of Computer Science
Aberystwyth University
Aberystwyth
Ceredigion
SY23 3DB
Wales, UK

mailto:ALH72@aber.ac.uk

Follow that Robot Alex Hine (ALH72)

Page 2 of 28

Declaration of originality

I confirm that:

• This submission is my own work, except where clearly indicated.

• I understand that there are severe penalties for Unacceptable Academic Practice,
which can lead to loss of marks or even the withholding of a degree.

• I have read the regulations on Unacceptable Academic Practice from the University’s
Academic Registry (AR) and the relevant sections of the current Student Handbook of
the Department of Computer Science.

• In submitting this work, I understand and agree to abide by the University’s
regulations governing these issues.

Name Alex R. Hine

Date: 01/04/2021

Consent to share this work

By including my name below, I hereby agree to this project's report and technical work being
made available to other students and academic staff of the Aberystwyth Computer Science
Department.

Name Alex R. Hine

Date: 01/04/2021

Follow that Robot Alex Hine (ALH72)

Page 3 of 28

Acknowledgements

I am grateful to all those who have been so supportive and helpful at the university including
my supervisor Fred Labrosse and my fellow classmates who always where there to help me if
I got confused or misunderstood.

I would like to thank my parents for taking me in during the second Lockdown and letting me
stay well past the holidays and my brother who, while more of a hindrance at times, helped
give me motivation to finish my work.

Follow that Robot Alex Hine (ALH72)

Page 4 of 28

Abstract

In robotics a huge part of it is telling a robot where to move, in factory conditions it may be
telling the arm of a robot to move to put a part in place or in rovers and other autonomous
vehicles it may be moving the rover from point A to B. Now this is not a difficult feat for the
most part, you can go about it many ways from manually controlling the robot to complicated
mapping and point navigation, but the issue may arise when you have many robots, or a
swarm. Programming all to do the same thing may be difficult and time consuming so we need
another solution.

So what if, for example, we were talking about rovers on mars, building habitats or some other
mission. We need a group of rovers all with cameras to go from point A to point B. it could be
quite tedious and time consuming to send the movement commands to all of the robots. My
solution would allow the rovers to see the rover ahead and follow it, dynamically detecting
and subsequently tracking and following that robot!

If this were to be implemented on these rovers only a single robot would have to be
programmed to move to the destination and the rest could just run this routine looking for
other rovers and following a distance ahead or behind.

Follow that Robot Alex Hine (ALH72)

Page 5 of 28

Table of Contents

1. BACKGROUND, ANALYSIS & PROCESS ... 7

 Background ... 7

 Analysis ... 7
1.2.1. Identification .. 7
1.2.2. Tracking .. 9
1.2.3. Movement .. 9

 Open CV ... 10

 ROS ... 10

 Programming language .. 10

 Process .. 11

 Version Control and Backups ... 11

2. DESIGN .. 12

 Overall Architecture .. 12

 Detailed Design .. 12
2.2.1. Class Diagram .. 13
2.2.2. Template Matching ... 13
2.2.3. Robot Instructions .. 14
2.2.4. Visualization .. 14

3. IMPLEMENTATION ... 15

 Image Handling .. 15
3.1.1. ROS to OCV ... 15
3.1.2. User Interface .. 15
3.1.3. Frames Per Second ... 15

 Template Matching ... 16
3.2.1. Matching the Template to Frame ... 16
3.2.2. TrackedOBJ ... 16

 Tracking ... 17

 Movement .. 17

4. TESTING ... 18

 Overall Approach to Testing ... 18

 Testing the Template Matching ... 19

 Testing the Object Tracking .. 20

Follow that Robot Alex Hine (ALH72)

Page 6 of 28

 Testing the Movement ... 21

5. CRITICAL EVALUATION ... 23

6. BIBLIOGRAPHY ... 24

7. APPENDICES ... 25

A. Third-Party Code and Libraries.. 25

B. Ethics Submission .. 26

C. Code Samples ...Error! Bookmark not defined.

Follow that Robot Alex Hine (ALH72)

Page 7 of 28

1. Background, Analysis & Process

This section should discuss your preparation for the project, including background reading,
your analysis of the problem and the process or method you have followed to help structure
your work. It is likely that you will reuse part of your outline project specification, but as you
write this report at the end of the project you should have more to discuss.

 Background

Prior to this project I had worked on a personal robot that shared a few similarities. This robot,
Called S.A.M, was designed to track faces with a mounted camera and moving to centre the
face in the image. A lot of what I learned in this project I have carried over to my major Project
here including: Open CV knowledge, translating image coordinates into movement and other
basic functions needed.

I am indeed interested in this project because of its potential in the future, specifically on
automation of robots on other planets. But even here on earth there are examples of similar
systems, such the platoon model which would make the car follow behind the one in front
automatically in a “Assisted self-driving” mode to create a group of vehicles to help increase
the capacity of the road. While there are other systems involved with this method (tracking
the road and following road markings) the fundamentals are the same, visually identifying a
car ahead and following it.

 Analysis

To think about this problem you need break down and identify the key points, for this project
they are

1. One robot needs to follow another
2. The robots should be connected, physically or through wireless
3. The following robot needs to be able to see the lead robot
4. The Follower needs to understand what to look for
5. The follower should have some way to understand the position of the lead
6. The follower should be able to move

Given this list of points a few are solved with just the type of robots used, ones that can move
and have cameras are obviously essential addressing points 3 & 6 and we will make the
program run independently on the following machine with no input from the other addressing
point 2

That leaves us with 3 basic areas to cover: Identification, Tracking and Movement

1.2.1. Identification

The Follow robot needs to be able to identify the lead robot by sight only. It must not
communicate with the lead in any way and should be a completely independent system.
To achieve this a “pattern match” method seems most appropriate, what this means is that
an image or pattern will be passed as the template then the program will scan across an image
(or frame) and match it to the template then creating a heatmap of where the most likely area
is. To do this A library such as Open CV would be ideal.
Open CV [OCV] is an image manipulation library that allows for many different processes to
be run on an image including template matching with various methods.

Follow that Robot Alex Hine (ALH72)

Page 8 of 28

Template matching is a method of finding one image in another. It works by taking the
template and scanning it across the image checking each pixel against the other, giving a
weight between 0 and 1 to how closely they match. Below are the methods OCV comes with.
Three are built in (and their normalized counterparts) each comparing pixels in their own way.

I passed the template and reference image into a temporary program that tested each of the
methods and output their images into the following:

As we can see all but one of the methods correctly identified the template. That being said
each was no equal, from a time perspective each took a different amount of time.
CCORR was the fastest followed by CCOEFF and SQDIFF which were very similar. with each of
their normalized versions taking longer still. While the fractions of a second difference may

Figure 6 CCOEFF

Figure 7 CCORR

Figure 8 SQDIFF

Figure 6 CCOEFF Normalized

Figure 7 CCORR Normalized

Figure 8 SQDIFF Normalized

Figure 1 Template Image Figure 2 Reference frame

Follow that Robot Alex Hine (ALH72)

Page 9 of 28

seem trivial when going frame by frame the difference is very noticeable. Overall I found
SQDIFF to fail more often than CCOEFF in my tests and as such will use CCOEFF.

1.2.2. Tracking

The Follow robot should track the lead robot through vision, knowing the position and scale
in frame will allow us to calculate useful information such as distance and which way to turn.
OCV can be used here as well as the bounding box created by template matching can be used
to gather all that data however, template matching is slow and inefficient, meaning that as
the lead vehicle moved (potentially quite quickly) it could be too slow to keep up. To counter
this we could use another of OCVs functions called “Object tracking” that will take a bounding
box then track the movement of the pixels in that box. This speeds up the processing massively
as the program will not have to scan the whole image any more just the immediate
surrounding area.

There are eight implementations [1] that are given to OCV and subsequently us when using
object tracking, each one comes with benefits and failings, bellow I compiled a table that
shows some of the key points

Tracker Name Speed Scaling Accuracy Notes

Boosting Tracker Slow No Poor Legacy tracker

MIL slow/Moderate Yes Moderate

KCF Fast No High Better at reporting Failure
then the previous two

CSRT slow Yes High

Median Flow Moderate Yes High [under slow
movement]

Works well when motion is
predictable

TLD Moderate Yes Moderate Good at tracking though
occlusion but can give many

false positives

MOSSE Fast No Poor

GOTURN ?? ?? ?? Requires external file,
dependent on system and

deep learning

In my project we need the tracker to be able to scale with the object to show distance so any
tracker that does not inherently do this is out. Unfortunately, this means getting rid of KCF
which is the highest recommended due to its speed and accuracy, and from my tests I can say
that it is indeed the most accurate with least noise, but scaling is a necessity.

This taken into account I feel that median flow would be the ideal method as it give the best
balance between speed and accuracy, the note about it only working well under predictable
movement is fine as the lead robot should not move to erratically.

1.2.3. Movement

The final part would be the movement, translating the position from the camera into
commands that the robot would understand. ROS takes commands for the rotation and
acceleration; these should be easily calculated from the size and position of the bounding box
gained from the tracker.

Follow that Robot Alex Hine (ALH72)

Page 10 of 28

 Open CV

Open CV will be essential in this project. It is a library designed to deal with image
manipulation such as the matching and tracking described above. In addition the library gives
options to visualize and display to a user in a far more friendly way then the terminal by
displaying frames and video with text and basic shapes drawn on, such as the bounding box
being drawn on the frames and displayed to the user so they can understand what the robot
sees and is computing.

In addition to this my familiarity to Open CV from previous personal projects will assist greatly
in this project.

 ROS

ROS stands for “Robot Operating System” it is the way most robots, including the ones I will
be using operate. The program allows for a set of code to interact with a robot. This is not just
a system used for education purposes however, ROS is an industry standard being used by
company such as Google and Amazon. ROS is a Unix-based application and as such will only
run on Linux based systems (with some ported exceptions however these are not officially
supported).
There are 3 main distributions of Linux currently supported: Kinetic1, Melodic and Noetic, the
newest of which, Noetic, will be the one I use as it is the most up to date and has the greatest
support.

ROS works on a node-based system. Nodes are a way of computing various parts of a robot,
in any system there are likely many nodes, things such as wheels, arms, rangefinders etc can
all have individual nodes but also code such as pathing and image processing may have their
own nodes as well [2]
Nodes can communicate by passing simple messages such as integers or boolean etc but the
common way for Nodes to interact is through Topics. A topic is a Message routing system that
allows one node to “publish” a message to the topic, it does not necessarily need a recipient,
however if another node were to subscribe to this topic it would receive the information.
Commonly wheels are set by the robot to be listening to a specific topic, which code could
publish to in order to drive the wheels.
There are other more complicated computation devices but for the scope of this project are
most likely overkill and thus unnecessary.

 Programming language

I personally am comfortable using a number of languages for this project: C++, java, or Python
however only one can be chosen, and I believe I will use Python for this project.

While open CV works with all three of the above, ROS only communicates with C++ and Python
and seeing as my pervious projects that used Open CV where in python, I feel like my
experience with the two will aid me in this endeavour.

1 ROS Kinetic is no longer officially supported as of April 2021 [5]

Follow that Robot Alex Hine (ALH72)

Page 11 of 28

 Process

The model I used for this project was a combination of the “V-Model” and the “waterfall
Model” as for each of the above-described sections I planned out everything then moved to
coding then checking go back and forth as necessary once each step was complete, I would
move to the next and repeat the planning etc until I had three sections that worked and just
needed to be brought together in one final piece.
The reason I decided to do this in this way was to help me focus on each individual point and
make it the most adaptable and work robustly. If the tracking is working well then, any
issues that arrive during the movement can be attest to that code and not the code from
previous sections.
In addition this method gives me three sets of code that can run independently of each
other and be reused later on in other projects or be easily adapted for different hardware.

 Version Control and Backups

When it comes to version control and backups I am, ashamedly, quite bad at both. My
workflow usually breaks the needs of version control, while I may make old files that get
passed on when the code is no longer used or I want to refactor my code for clarity or
neatness, my workflow is a mix of small, short bursts mixed with huge changes which I
usually do not look back on unless exceptional circumstances. I like to look back on mistakes,
especially on code I wrote, and try to understand how and why they went wrong instead of
just reverting back to an old version.

When it comes to backups, I have to say again I am lacking, I am not a user of online
repositories like GIT etc and so I use physical backups on an internal spare drive and (for this
project was important) an external backup drive.

Follow that Robot Alex Hine (ALH72)

Page 12 of 28

2. Design

 Overall Architecture

The design of this robot needs to accomplish 3 main points: Find the given template, track
that image, and follow the lead robot a high-level flow chart would be as follows

Figure 9 Flowchart of intended process

 This shows the way I hope to make the process work, key to note here that the subscriber
section is run independently from the main code, that is because the subscriber is constantly
pushing and updating this part independently form the main flow once set up.

This meets all three of the points I laid out before as the template is taken and checked against
the frame and when found the program enters the tracking loop, here the bounding box is
updated and used to calculate the movement of the robot.

 Detailed Design

Given this flow I intend to follow I decided to make the project a Object Oriented Project,
Objects will be useful as there are many places that should be reused and called upon at
various places. Below is the class diagram I intend on creating.

Follow that Robot Alex Hine (ALH72)

Page 13 of 28

2.2.1. Class Diagram

Figure 10 : Class diagram

At first this may seem overly complicated, but it does have some method to it. The program
has two main classes and 4 main files, each separated to allow for flexibility if this was made
to be adapted to work with other hardware. The two classes “image_tocv” and “trackedOBJ”
have their uses, the first holds the image to be used in the calculations, it has the frame hight,
width and colour depth, some of which is used. This class is primarily used however to convert
the image from the format ROS gives to one that Open CV can use but I will discuss this late
in the implementation.
TrackedOBJ is to hold everything important to the object to be tracked, namely it contains the
current position and scale of the object and the starting position and scale, this is important
as it will help us calculate movement and scale changes. In addition this class does a lot of the
calculation on its position in the frame. There are also methods at the end that calculate a
colour value for visualization the position later on. This class is also useful as it can be added
too if more than one object was needed to be tracked (although that is beyond the scope of
this project)

2.2.2. Template Matching

The template matching is a vital part of the program as it what sets the base for all the
bounding boxes, how I wish for this to work is: Program takes template, scans for template in
frame, then the program displays a box around what it has found, the user then says “Yes, this
is correct” or “No, let me show you what is the box”
Selecting the ‘Region of interest’ [ROI] should be done automatically with the template
matching but a second method for doing so with the user selecting the bounding box would
also be useful as a redundancy in case the template matching fails.

Follow that Robot Alex Hine (ALH72)

Page 14 of 28

2.2.3. Robot Instructions

The second flow chart in figure 9 shows the basic understanding of how the movement is
calculated. And as shown in the class diagram we can see that the centre and scale is being
tracked, finding the scale difference is easy enough as both the initial size and current size are
tracked. The centre is not much more complicated as all you need to do is work out half the
width of the frame then compare that to the centre of the tracked object.
From here you convert that to a percentage where less than 100% means the object is to the
left of frame / smaller and above 100% equals the opposite. From here we can apply this to a
small number such as 1 then take away the same for example say the scale and centre percent
was “50%:125%” meaning the object is 50% to the left and is 25% larger so apply that to 1 and
we get “0.5:1.25” which is good but both are above 0 which is right for the scale but we want
the rotation to move the other direction, (negative numbers and positive numbers are moving
in opposite directions) so if we take 1 from both numbers we are left with “-0.5,0.25” which
is better as now the rotation will turn in the right direction. In addition this method also has
the added benefit of moving quicker or slower depending on how far away from the normal
it is, this is great because as the robot moves closer to the correct position it slows down,
minimising overshooting and subsequently bounce.

2.2.4. Visualization

Visualization, while not strictly necessary for the project, is a vital part of the design. I believe
that the user should be understand what the robot is thinking. To this end I will have the code
display a window showing the output of the camera on the robot overlayed with the bounding
box and centre dot of what the robot is currently tracking. In addition as I described above, I
intend on having the bounding box and centre dot be coloured to show its position in frame.
in addition other useful information should be able to be toggles such as the frames per
second and debug information such as if the tracking has failed to give the user a visual cue.

Follow that Robot Alex Hine (ALH72)

Page 15 of 28

3. Implementation

 Image Handling

3.1.1. ROS to OCV

The vision and image handling of the robot is essential for my project. As the robot needs to
use sight to identify and track the lead vehicle it is vital it works well. In ROS vision is given its
own node and topic to publish to, this is ideal for us as setting up a subscriber would be easy
and give us the images.
Unfortunately, ROS returns an image in a format incompatible with Open CV which is not
useful. However this is not a problem unique to me and there is a library part of ROS called
“CV Bridge” that can be used to bridge the two formats, converting the ROS images into ones
compatible with OCV. This problem is dealt with by the file “imageConvert.py” in my files. This
file contains the class “Image_tocv” a object type that when initialized sets up a subscriber to
a valid given robot vision topic. Line 27 in this file is the converter it reads

self.cv_image = self.bridge.imgmsg_to_cv2(Ros_image, "bgr8")

where “Ros_image” is the image taken from the subscriber. “bgr8” is the format that is
needed for open CV, this line basically converts the image, in addition there is an error
checking so if it fails it will display why instead of crashing the code.

3.1.2. User Interface

While not strictly necessary for the project the user should be able to see what is going on in
the robot’s “brain”, so a visual display is probably useful. Displaying this is easy enough
OpenCV can display an image in a window updating it. This image can be drawn on, so I
decided to draw the bounding box around where the program sees the tracked object. While
this is simple as OCV makes this the cost of one line but there is a small but significant part of
it all that I am proud of. When displayed in tracking mode I have added some code at the end
of the trackedOBJ class that calculates a colour range dependent on the position and scale of
the object, a blue border and dot means the object is centred and as it moved away in either
direction the colour will slowly blend into either red or green dependent on direction / scale
and the closer the colour is to pure red/green then the further from the origin it is. While not
useful in the grand scheme of the project this small feature was very helpful in the testing
phases and for demonstration & visualization as the user is able to see clearer.

3.1.3. Frames Per Second

Another useful statistic for the user to know is how many frames the program is able to
complete per second, the FPS, a higher framerate would mean the code is efficient and not
missing out, but a low framerate (lower then 25) is not ideal as that means the code could be
skipping frames and missing data. To show the user the frame rate at any point in
“followThatRobot.py” on lines 68 and 87 I gather the current time then again and use the
difference to see how much time has passed between those two lines being run, in between
which is the main subroutines that do the template matching and tracking. Line 89 is where
the text is added to the frame2

2 This is usually commented out to declutter the screen

Follow that Robot Alex Hine (ALH72)

Page 16 of 28

 Template Matching

3.2.1. Matching the Template to Frame

To begin the template and image must first be brought together and converted. The template
matching in open CV requires the input image to be in Gray scale so inside the findTemplate
function in “templateMatch.py” firstly the frame is converted into BGR2GRAY which is a type
of colour depth for grayscale. Then the template matching occurs looking for the template in
img_gray saving the outputted data array to ‘res.’ The output of the template matching is a
matrix that contains a float from 0 to 1 for each pixel on how close it was to the template

image. This can then be displayed to the user with an
interpreter to give the outputs seen before and below.
This is a simple visualization of the matrix where each
pixel was assigned a BW value where white is 1 and 0
is black, we can see that it has a spot of brightest
points. Seeing as we only want a single match, we do
not need to worry about anything but the highest
point, we can do this by taking a threshold, which I
have set to 1 (so only near perfect matches are

selected) and then, using NumPY3, take the position of these high numbers [line 26] and map
them to coordinates that OCV can then use to draw the initial box around for the user to see.

The user then sees in the visualization window a box around the found image (if the template
is indeed found) and if it is correct then the user presses ‘Y’ and the process continues
however if, for some reason, the match found is incorrect or just not found at all the users can
press ‘B’ which allows the user to then draw a bounding box around whatever object they
want tracked and that box will be taken then as a “found template”

3.2.2. TrackedOBJ

Once a template is found it is used to create an object called “target” [lines 24,27]. Target is a
trackedOBJ object that is the foundation of the tracking. It contains the information on the x
and y coordinate of the top left corner and the hight and width of the box, in addition it
calculates the area of the object by multiplying the hight and the width (scale). It also retains
the original values of these variables as things such as scale will need to be referenced against
the original to show changes in size.
The trackedOBJ also does the calculation for the distance away from the origin that the object
may be. It does this two ways, simply for the scale it first takes the area of the original (h*w)
then it takes that and divides it by 100 to be multiplied by the area of the updated box.
The full equations for these calculations are [if x,y,w,h are the new values and X,Y,W,H are the
original]

𝑆𝑐𝑎𝑙𝑒 % = (𝑤 ∗ ℎ) ∗ (
100

𝑊 ∗ 𝐻
) 𝑋 𝑂𝑓𝑓𝑠𝑒𝑡 % = (𝑥 + (

𝑤

2
)) ∗ (

100

𝑓𝑟𝑎𝑚𝑒𝑊
2

)

The equations are simple but knowing the percent offset allows for an analogue input to the
wheels instead of a binary on / off I can use this to calculate a smoothing equation as
described below.

3 NumPY is a library that deals with matrices and large number arrays

Figure 11 CCOEFF Template matching

Follow that Robot Alex Hine (ALH72)

Page 17 of 28

 Tracking

As stated above, it is not resource viable to run template matching for every frame, it would
cost too much processing power and be horrible inaccurate as the robot moves and rotates
the template may become too dissimilar to not be found. So another method must be used
and OCV comes with the ability to do object tracking.
Firstly the tracker needs to be created [ln 59, “followThatRobot.py”] here the type of tracker
(median flow) is declared and is created in the variable “Tracker”. Then starting after the
target has been found the tracker is initialized with the starting cords that the template
matching finds. TrackObject [ln 32, “templateMatch.py”] is then called, what this does is
update the tracker meaning the program will look at the bounding box and compare it to the
previous frame, if the contents have moved it will move the bounding box accordingly then
return this. The tracker object is then updated.
One aspect of the tracker is the variable “OK” that is a boolean True or False. This variable is
an output that returns true if the tracked object is still found and false if not.
If the tracker is found the box is drawn around where it is found.

 Movement

Movement works by publishing Twist messages to the node created at the start of the
program [ln 41, followThatRobot.py”].
To calculate the movement we need to take the calculations from the tracking process and
apply them to another equation that can convert the positional data into usable movement
commands. The variables we need to publish is the linear and angular velocities to the node.
This is calculated in the movementCalc function that takes the offset of the centre and scale
of the bounding box.
ROS takes movement variables as an integer value that can be positive or negative, where
negative numbers will cause the robot to reverse or turn left and positive numbers the
opposite. So to convert a percentage to a usable number first we must divide the number by
100, this will give us a value between 0 and 2 which would be considered always positive so
we will need to take 1 from this to move the number down so that the range is now -1 to 1.
This would be the end however if the bounding box is 125% scale meaning the lead robot is
too close and the follower needs to reverse, if we plug this into the equation, we get 0.25, a
positive integer that will mean the robot moves forward and further increase the scale. To fix
this we need to multiply the whole equation by -1 this will invert the number to the other side
of 0 moving the robot in the right direction, the same is with the angular velocity needing it
to be inverted. The resulting equation is then (where x equals the scale or centre offset)

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = ((
𝑥

100
) − 1) ∗ −1

Now the robot does move in the right directions however due to the nature of the tracking
not being 100 percent perfect, there is minor noise from the trackers movement meaning the
offset will never truly sit at the origin and always bounce around, and with this system
unfortunately this causes the program to overshoot and oscillate around the origin creating
larger and larger waves. To solve this I added a simple check after the equation calculation for
both velocities that checks if the number returned is in the range -0.1 to 0.1, if so It sets the
velocity to 0 stopping the robot and negating the overshot and masking the noise.
The final point is one last check, if the offset passed to the movement calculations is 0 meaning
the tracker has lost the object the program sets the velocity to 0 as passing 0 into the
calculation returns 1 always (max movement speed) so if the tracking were lost the follower
would just begin driving top speed away.

Follow that Robot Alex Hine (ALH72)

Page 18 of 28

4. Testing

 Overall Approach to Testing

Testing my robot will require testing each of the three systems, the template matching, the
tracking, and the movement, luckily each of these systems are independent of each other and
can be tested without relying on the previous, with exception to movement which will need
the tracking to understand.

Follow that Robot Alex Hine (ALH72)

Page 19 of 28

 Testing the Template Matching

To test the template matching I need to test if an object is found so I will have to change two
things: 1) the input image, to test on a clean and cluttered background for different images,
and 2) the template image, how far can I push the template matching.
Bellow is a table with my tests and resulting images (as stated all code is the same to runtime
code with the exception of image input path being changed to a static image4)

Base Image Template
Image

Expected Output Result

Template found

Template Found

Template found

Failed. I believe
because the

image was too
small and vague

and too similar to
the background to

be correctly
identified

Template Not Found.

Failed, I believe
because while the
template was not
in the image it still
found something,
and so the highest
chance was taken

Template Found

The tests show that the template matching is not perfect, when given templates that have
low contrast the matcher fails, and that if the template is not found then the matcher will
match what it can and give false positives. The take a ay is that robot should be in a well-lit
area and not to accept the matcher until the true template is found.

4 All images are my own unless stated otherwise

Follow that Robot Alex Hine (ALH72)

Page 20 of 28

 Testing the Object Tracking

To test the tracking I will be using the colour border system I implemented, while turning off
the movement so the robot does not try to correct the error and we can see the program
acknowledge the tracked objects changes.

Direction to move Expected
outcome

Output Result

Object is Centred Blue box and
Dot

Works as intended

Move object to Left Dot goes Green

Works as intended

Move object to Right Dot goes Red

Works as intended

Move object Close Box goes Green

Works as intended

Move object Away Box goes Red

Works as intended

Fast move Left to
Right

Object is tracked Tracking is lost The Tracker can’t follow
an object if it moves
across the screen too

quickly, at a speed where
it would have fully left the

bounding box between
frames.

Fast move Near to Far Object is tracked Tracking continues but change in
scale is lost

While the tracking is not
lost if the object moves

exceptionally quickly
forward or backwards the

scale does not change

Follow that Robot Alex Hine (ALH72)

Page 21 of 28

The testing proves that with small, controlled movements between frames like that of a
vehicle the tracker can keep up and know where an object is, but with too fast of motion or
teleporting an object (in the simulation) the tracker will fail.

 Testing the Movement

To test the movement we will take the tracked objects position and move it. Obviously, I
cannot show motion here. Some testing code that displays in the terminal what the linear and
angular velocities are this will allow us to see how the program reacts to the movement.

Direction to
move

Expected
outcome

Output Result

Object still No Velocity

Works as
intended

Move object
to Left

Negative
Angular
Velocity

Works as
intended

Move object
to Right

Positive
Angular
Velocity

Works as
intended

Follow that Robot Alex Hine (ALH72)

Page 22 of 28

Move object
Close

Negative Linear
Velocity

Works as
intended

Move object
Away

Positive Linear
Velocity

Works as
intended

Tracking is
lost

Velocity should
default to 0

Works as
intended

As we can see the robot responds to all the directions correctly, this is then interpreted by
ROS and the robot does move correctly

Follow that Robot Alex Hine (ALH72)

Page 23 of 28

5. Critical Evaluation

In terms of my project it was a fun one to attempt, like I stated before my previous project
shared many similarities, and I certainly learned a lot and improved on my previous design
and when I go on to remake my previous project, I surely will take some of my knowledge
from this and improve on it again.

Overall I think I hit the main points of the project really well, the exact specification was “A
robot that follows another through sight alone” and I have definitely achieved that. The robot
does not communicate with any other only gathering information visually and does a good
job at keeping the lead robot at a constant distance and within frame. The program works
quickly with only rare and minor flaws and is written in a way that allows it to be easily
adaptable.

However there where a few features I failed to foresee and therefore would change. First and
foremost I am not a fan of simulation, especially gazebo (the simulation program used) I find
it difficult to work with and it caused me much unwarranted stress, so if I where to do this
again I would definitely work in the real world, this also would have the added benefit of
making the code have to be more robust. The double edged sword of the simulation route is
the perfection, on one hand the situations are always perfect, there are no external factors
like the sun at the time of day, wind or other environmental issues meaning the program will
always run the same given the same inputs however the real world is not the same and I feel
like maybe my project is worse off having never been tested in these conditions, the need to
make the code more robust to deal with them would have improved my code. So one point I
would like to change is to do it in real life. Obviously given the year and the pandemic response
it was impossible to do this time.

When it comes to features, I wish I could have added, my initial design had a system in place
to make the user not have to give any input making the program fully independent. The
program would, after having found the same template for a certain time, automatically realise
it has found the correct template however due to time restraints and issues with the template
matcher not being perfect, I had to cut it. Given the chance to do this again I would have
prioritized this feature and not had to scrap it.
Another thing I would change is the issue of the bounding box selector, I learned how to do it
in my initial tests but removed the feature to make the program more “independent” then
later down the line when that was scrapped, I was asked if adding it back in would help with
the matchers if the template was not found but, while it was added in it does not work
properly and thus can be useless at times. Given the chance to work on it again I would plan
to include this feature from the start and work it into the code so it would work with the
program instead of onto of the code.

When it comes to my own shortcomings as I mentioned above my version control is poor and
I should really work on that myself. It is not good coding practice

Follow that Robot Alex Hine (ALH72)

Page 24 of 28

6. Bibliography

[1] A. Rosebrock, "OpenCV Object Tracking," pyimagesearch, 30 July 2018. [Online].
Available: https://www.pyimagesearch.com/2018/07/30/opencv-object-tracking/.

[2] ROS, "ROS Concepts," ROS, 21 06 2014. [Online]. Available:
http://wiki.ros.org/ROS/Concepts.

[3] "Open Cv Website," OpenCV, [Online]. Available: https://opencv.org/.

[4] "Ros," Open Robotics, [Online]. Available: Ros.org.

[5] ROS, "ROS Installations," ROS, [Online]. Available: http://wiki.ros.org/ROS/Installation.

Follow that Robot Alex Hine (ALH72)

Page 25 of 28

7. Appendices

A. Third-Party Code and Libraries

Open CV
ROS Noetic
 CV Bridge

Open CV Library – This was used to deal with all the vision and template matching and object
tracking. The version used was v4.5.X. It is a open source project available from OpenCV.org
[3]. It is released under the BSD 3-Clause License and is used without modification.

ROS – Ros is the library used to communicate with the robot in any way. The version used was
ROS Noetic. The library is open source library released under a BSD licence. It is available from
the Open Robotics website Ros.org [4]

Follow that Robot Alex Hine (ALH72)

Page 26 of 28

B. Ethics Submission

Follow that Robot Alex Hine (ALH72)

Page 27 of 28

Follow that Robot Alex Hine (ALH72)

Page 28 of 28

